SigmaWay Blog

SigmaWay Blog tries to aggregate original and third party content for the site users. It caters to articles on Process Improvement, Lean Six Sigma, Analytics, Market Intelligence, Training ,IT Services and industries which SigmaWay caters to

Accuracy-Interruptibility Trade off in Predictive Analytics

More accuracy is better, but it may not be a good idea to keep working on a model if you are expecting negligible improvement or cost of accuracy exceeds financial gain. The sole purpose of a data science job is to create financial value and minimize loss by building more accurate models. The guiding regulatory rules say say that if your model is having a negative impact on a customer then it must explain why an individual was so rated. This is a classic tradeoff between accuracy and interpretability. In a regulated industry if someone suffers from your decision and you can’t explain why the prediction model worked that way, your technique is not allowed. A good story telling using data visualization might help you to convince management. Some techniques like Penalized Regression, Generalized Additive Models, Quantile Regression can provide better accuracy and maintaining interpretability. Deep Neural Networks have also proven a successful approach to solve this problem.

You can read in more detail at :


Rate this blog entry:
From Big Data to Small Data 
Renovating Sales and Marketing Practices using B2B...


No comments made yet. Be the first to submit a comment
Already Registered? Login Here
Thursday, 24 September 2020
If you'd like to register, please fill in the username, password and name fields.

Sigma Connect

sigmaway forums


Raise a question

Access Now

sigmaway blogs


Blog on cutting edge topics

Read More

sigmaway events


Hangout with us

Learn More

sigmaway newsletter


Start your subscription

Signup Now

Sign up for our newsletter

Follow us