SigmaWay Blog

SigmaWay Blog tries to aggregate original and third party content for the site users. It caters to articles on Process Improvement, Lean Six Sigma, Analytics, Market Intelligence, Training ,IT Services and industries which SigmaWay caters to

Classification using ML

Classification of data is very important in many organizations. They can be used to make decisions. But the task of classification can be very tedious. Now imagine a machine doing this job. Classification using machine learning is with the help of supervised learning approach and algorithms. Machine learns from the data input given to it and with the help of this learning, it classifies new observation.

For example, we want to check number of male and female members in an organization. Here we can train our machine to do this classification. 

Classification using machine learning is one of the trending technologies being used in various fields. It has many applications in many domains other than IT.

Various algorithms can be used to implement classification. There are two types of learners in classification – 
Lazy Learners - which simply store the training data and wait until a testing data appears. They classify the data based on most related data.
Eager Learners – that construct a classification model based on given training data.

Different classification algorithms are – Decision Tree, Naive Bayes, Artificial Neural Networks, K-nearest neighbor.

Read more about them and various evolution methods at


Rate this blog entry:
Still about a decade away from a real robot friend
Working with Machine Learning

Related Posts



No comments made yet. Be the first to submit a comment
Already Registered? Login Here
Friday, 18 September 2020
If you'd like to register, please fill in the username, password and name fields.

Sigma Connect

sigmaway forums


Raise a question

Access Now

sigmaway blogs


Blog on cutting edge topics

Read More

sigmaway events


Hangout with us

Learn More

sigmaway newsletter


Start your subscription

Signup Now

Sign up for our newsletter

Follow us