SigmaWay Blog

SigmaWay Blog tries to aggregate original and third party content for the site users. It caters to articles on Process Improvement, Lean Six Sigma, Analytics, Market Intelligence, Training ,IT Services and industries which SigmaWay caters to

Principal Component Analysis

Principal Component Analysis is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possible correlated variables into a set of values of linear uncorrelated variables called principal components. The goal is to explain the maximum amount of variance with the fewest number of principal components. PCA transforms the initial features into new ones that are linear combinations of the set of variables. For this analysis, first the original values should be normalized and the covariance matrix should be formed. The eigenvalues and eigenvectors should be calculated and the eigenvector with the highest eigenvalue has to be chosen. For the highest eigenvalue the data set matrix has to be multiplied and finally the mean can be put back which was removed in the beginning. However, if the original data set is correlated the solution can be unstable. Read more at:


Rate this blog entry:
Assuring Customer Data Security
BI dashboards and why should we choose them!


No comments made yet. Be the first to submit a comment
Already Registered? Login Here
Thursday, 24 September 2020
If you'd like to register, please fill in the username, password and name fields.

Sigma Connect

sigmaway forums


Raise a question

Access Now

sigmaway blogs


Blog on cutting edge topics

Read More

sigmaway events


Hangout with us

Learn More

sigmaway newsletter


Start your subscription

Signup Now

Sign up for our newsletter

Follow us