SigmaWay Blog

SigmaWay Blog tries to aggregate original and third party content for the site users. It caters to articles on Process Improvement, Lean Six Sigma, Analytics, Market Intelligence, Training ,IT Services and industries which SigmaWay caters to

Quantifying Twitter sentiments

This article elaborates on the sentiment analysis from tweets using data mining techniques. Instead of using SQL, it shows how to conduct such analysis using a more sophisticated software called RapidMiner. It explains how one can extract Twitter data into Google Docs spread sheet and then transfer it into a local environment utilizing two different methods. The emphasis is on how to amass a decent pool of tweets in two different ways using a service called Zapier, Google Docs and a tool called GDocBackUpCMD, along with SSIS and a little bit of C#. Zapier is used to extract Twitter feeds into Google Docs spread sheet and then copy the data across to local environment to mine it for sentiment trends. Next, it is shown how this data can be analyzed for sentiments i.e. whether a concrete Twitter feed can be considered as negative or positive. For this purpose, RapidMiner as well as two separate data sets of already pre-relegated tweets for model learning and Microsoft SQL Server for some data polishing and storage engine. Read more at:

Location (Map)

Rate this blog entry:
Map customers path using in-store Wi-Fi network
Customer care and untapped social space

Related Posts



No comments made yet. Be the first to submit a comment
Already Registered? Login Here
Sunday, 09 August 2020
If you'd like to register, please fill in the username, password and name fields.

Sigma Connect

sigmaway forums


Raise a question

Access Now

sigmaway blogs


Blog on cutting edge topics

Read More

sigmaway events


Hangout with us

Learn More

sigmaway newsletter


Start your subscription

Signup Now

Sign up for our newsletter

Follow us